

FLUENCE TOBIAS NITSCH

The German Capacity Market – Risk and Opportunity for BESS

Rapid renewables expansion in Germany brings several challenges to the energy system of the future

Energy transition in Germany¹⁾

Requirements of energy system of the future

Flexibility

- Bulk of renewable generation requires demand-side flexibility to avoid tremendous curtailment costs
- Shifting of energy to times of few renewable generation

Dispatchable generation

- Residual load to be covered with dispatchable capacity
- Capacity market measure to incentivize capacity buildout, other countries show that BESS can play crucial role

BESS supports supply- and demand-side flexibility as well as grid utilization challenges

Wholesale market volatility drives BESS revenue stack towards arbitrage

Wholesale market volatility drives BESS revenue stack towards arbitrage

BESS business case is highly attractive in Germany but does not offer long-term contracted revenues

BESS revenues: highly volatile & unpredictable¹⁾

PV or wind PPA revenues: flat & long-term contracted

BESS with high reward profile but "black box character" of revenue projections

Capacity markets pay long-term contracted revenues that offer additional security for creditors and investors

BMWK outlined plans to introduce capacity market in recent paper

WHAT is a capacity market?

A capacity market is a type of electricity market in which power generators are paid to ensure they have sufficient capacity available to meet future electricity demand, even if that capacity is not used. - ChatGPT

Today's focus: Design requirements for future capacity mechanism

Total costs: Batteries offer low marginal costs and create downward pressure on CM clearing prices

Key take-aways

- Batteries have low marginal costs compared to other generation assets, especially gas peakers
- They thereby create a downward pressure on clearing prices and lower overall costs
- 10 GW of H₂-ready gas power plants already subsidized through power plant strategy (KWS)
- CM should explicitly exclude these assets to avoid capital-intensive double incentivization

CO₂ emissions: BESS enables dispatchable capacity of carbon-neutral electricity

Fronter Economics study

- Recent study showed that grid-scale storage reduces need for gas peakers by 9 GW in 2030
- Equivalent of 6.2mt CO₂ savings in 2030 and 7.9mt in 2040
- Effect of 120km/h limit on all Autobahns: 6.7mt

Asset availability: Capacity market will not replace strategic reserve for extreme events

Key take-aways

- Quote from BMWK paper: "To counter extreme situations, additional capacities may be useful and necessary [...] these are not provided via a capacity market [...] One such measure is a reserve of controllable capacities. This is held by the TSOs outside the market for extreme situations."
- The capacity market is not meant to be last resort in terms of power supply (i.e., to cover "Dunkelflaute")

De-rating factors: Realism should outweigh risk-aversion in calculation basis stress scenarios

Contract terms: Sufficient time required for thorough pre-qualification process and investor security

Q&A

What do you think - will the Capacity Market in Germany be beneficial to **BESS** and create investor security?

